学习

Spark MLlib机器学习实践(第2版)

资源名称: 机器学习实践(第 版) 内容简介: 作为新兴的、应用范围 为广泛的大数据处理开源框架引起了广泛的关注,它吸引了大量程序设计和开发人员进行相关内容的学习与开发,其中 是 框架使用的核心。本书是一本细致介绍 程序设计的图书,入门简单,示例丰富。 本书分为 章,从 基础安装和配置开始,依次介绍 程序设计基础、 的数据对象构建、 中 使用介绍,各种分类、聚类、回归等数据处理方法, 后还通过一个完整的实例,回顾了前面的学习内容,并通过代码实现了一个完整的分析过程。 本书理论内容由浅而深,采取实例和理论相

Python+Spark 2.0+Hadoop机器学习与大数据实战

资源名称: 机器学习与大数据实战 内容简介: 本书从浅显易懂的 大数据和机器学习 原理说明入手,讲述大数据和机器学习的基本概念,如分类、分析、训练、建模、预测、机器学习(推荐引擎)、机器学习(二元分类)、机器学习(多元分类)、机器学习(回归分析)和数据可视化应用等。书中不仅加入了新近的大数据技术,还丰富了 机器学习 内容。 为降低读者学习大数据技术的门槛,书中提供了丰富的上机实践操作和范例程序详解,展示了如何在单机 系统上通过 虚拟机安装多机 虚拟机,如何建立 集群,再建立 开发环境。书中介绍搭建的上机实

大数据与机器学习:实践方法与行业案例

资源名称:大数据与机器学习:实践方法与行业案例 内容简介: 本书从企业实践出发,内容覆盖数据、平台、分析和应用等企业内数据流转的主要环节。布局上,按照数据与平台篇、分析篇和应用篇分别撰写。数据与平台篇(第 章),立足找到数据、整合数据、使用数据三个角度,介绍数据在企业内的分布和处理逻辑,以便快速为分析准备素材。分析篇(第 章),选取企业实际案例,介绍常用的数据挖掘与机器学习算法,以业务场景为导向展示数据分析过程和技巧。应用篇(第 章),选取当前主流的四个应用场景,介绍如何实现数据驱动,让数据 自动 流转于

Spark MLlib机器学习:算法、源码及实战详解

资源名称: 机器学习 算法、源码及实战详解 内容简介: 《 机器学习:算法、源码及实战详解》以 版本源码为切入点,全面并且深入地解析 模块,着力于探索分布式机器学习的底层实现。 《 机器学习:算法、源码及实战详解》中本着循序渐进的原则,首先解析 的底层实现基础:数据操作及矩阵向量计算操作,该部分是 实现的基础;接着对各个机器学习算法的理论知识进行讲解,并且解析机器学习算法如何在 中实现分布式计算;然后对 源码进行详细的讲解;最后进行 实例的讲解。相信通过《 机器学习:算法、源码及实战详解》的学习,读者可全

零基础入门学习Python_Python教程

教程名称:零基础入门学习 课程目录: 【 教程网】 愉快的开始 【 教程网】 我和 的第一次亲密接触 【 教程网】 用 设计第一个游戏 【 教程网】 小插曲之变量和字符串 【 教程网】 改进我们的小游戏 【 教程网】 闲聊之 的数据类型 【 教程网】 之常用操作符 【 教程网】 了不起的分支和循环 【 教程网】 了不起的分支和循环 【 教程网】 了不起的分支和循环 【 教程网】 列表:一个打了激素的数组 【 教程网】 列表:一个打了激素的数组 【 教程网】 列表:一个打了激素的数组 【 教程网】 元组:戴