机器

机器学习与数据挖掘:方法和应用_数据库教程

资源名称:机器学习与数据挖掘:方法和应用 内容简介: 本书分为 个部分,共 章,较为全面地介绍了机器学习的基本概念,并讨论了数据挖掘和知识发现中的有关问题及多策略学习方法,具体地阐述了机器学习与数据挖掘在工程设计,文本、图像和音乐,网页分析、计算机病毒和计算机控制,医疗诊断、生物医疗信号分析和水质分析中的生物信号处理等方面的应用情况。 本书收集众多不同领域中数据挖掘的实际案例,以此来说明数据挖掘的具体解决方法,以期为广大读者提供一个更为广阔的数据挖掘应用视角。 本书的读者,可以是任何对机器学习与数据挖掘感

图解机器学习完整版 ([日]杉山将) 中文

资源名称:图解机器学习完整版 日 杉山将 中文 第 部分绪论 第 章什么是机器学习 第 章学习模型 第 部分有监督回归 第 章最小二乘学习法 第 章带有约束条件的最小二乘法 第 章稀疏学习 第 章鲁棒学习 第 部分有监督分类 第 章基于最小二乘法的分类 第 章支持向量机分类 第 章集成分类 第 章概率分类法 第 章序列数据的分类 第 部分无监督学习 第 章异常检测 第 章无监督降维 第 章聚类 第 部分新兴机器学习算法 第 章在线学习 第 章半监督学习 第 章监督降维 第 章迁移学习 第 章多任务学习 第

Python机器学习 PDF_Python教程

资源名称: 机器学习 作者简介: 是密歇根州立大学的博士生,他在计算生物学领域提出了几种新的计算方法,还被科技博客 评为 上具影响力的数据科学家。他有一整年都使用 进行编程的经验,同时还多次参加数据科学应用与机器学习领域的研讨会。正是因为 在数据科学、机器学习以及 等领域拥有丰富的演讲和写作经验,他才有动力完成此书的撰写,目的是帮助那些不具备机器学习背景的人设计出由数据驱动的解决方案。他还积极参与到开源项目中,由他开发完成的计算方法已经被成功应用到了机器学习竞赛(如 等)中。在业余时间,他沉醉于构建体育运

NLTK基础教程 用NLTK和Python库构建机器学习应用 完整pdf_Python教程

资源名称: 基础教程 用 和 库构建机器学习应用 完整 第 章自然语言处理简介 为什么要学习 先从 开始吧 列表 自助功能 正则表达式 字典 编写函数 向 迈进 练习 小结 第 章文本的歧义及其清理 何谓文本歧义 文本清理 语句分离器 标识化处理 词干提取 词形还原 停用词移除 罕见词移除 拼写纠错 练习 小结 第 章词性标注 何谓词性标注 标注器 深入了解标注器 顺序性标注器 标注器 基于机器学习的标注器 命名实体识别( ) 练习 小结 第 章文本结构解析 浅解析与深解析 两种解析方法 为什么需要进行解

《解析Java虚拟机器开发:权衡优化、高校和安全的最优方案》PDF 下载

资源名称:《解析 虚拟机器开发:权衡优化、高校和安全的最优方案》 下载 内容简介: 《解析 虚拟机开发 权衡优化高效和安全的最优方案》编著者张善香。 本书彻底摒弃枯燥的理论和简单的操作,注重实用性和可操作性,介绍了 编译测试、虚拟机的内部机制、 文件、栈和局部变量操作、内存异常、垃圾处理、性能监控工具、类加载器和执行子系统、编译优化等内容。让读者在没有编程基础的情况下,也可以掌握相关的操作技能,让读者学得更充实,更有针对性。 资源目录: 第 章一起走进 世界 的优势 排名第一的编程语言 提供给我们美好的就

Python机器学习算法 赵志勇 中文pdf_Python教程

资源名称: 机器学习算法 赵志勇 中文 第一部分分类算法 支持向量机 随机森林 神经网络 第二部分回归算法 线性回归 岭回归和 回归 树回归 第三部分聚类算法 第四部分推荐算法 协同过滤算法 基于矩阵分解的推荐算法 基于图的推荐算法 文献 第五部分深度学习 卷积神经网络 第六部分项目实践 微博精准推荐 资源截图:

Java机器学习 中文pdf

资源名称: 机器学习 中文 第 章 机器学习应用快速入门 第 章 面向机器学习的 库与第 章 基本算法 分类、回归第 章 利用集成方法预测客户关系第 章 关联分析第 章 使用 制作第 章 欺诈与异常检测第 章 利用 进行第 章 利用手机传感器进行第 章 利用 进行文本挖掘 第 章 机器学习进阶 资源截图:

Spark MLlib机器学习实践(第2版)

资源名称: 机器学习实践(第 版) 内容简介: 作为新兴的、应用范围 为广泛的大数据处理开源框架引起了广泛的关注,它吸引了大量程序设计和开发人员进行相关内容的学习与开发,其中 是 框架使用的核心。本书是一本细致介绍 程序设计的图书,入门简单,示例丰富。 本书分为 章,从 基础安装和配置开始,依次介绍 程序设计基础、 的数据对象构建、 中 使用介绍,各种分类、聚类、回归等数据处理方法, 后还通过一个完整的实例,回顾了前面的学习内容,并通过代码实现了一个完整的分析过程。 本书理论内容由浅而深,采取实例和理论相

Python机器学习和算法高级版视频教程_Python教程

资源名称: 机器学习和算法高级版视频教程 教程目录: 【 教程网】 、课程介绍 【 教程网】 、机器学习的数学基础 数学分析 【 教程网】 、数学基础 数理统计与参数估计 【 教程网】 、数学基础 矩阵和线性代数 【 教程网】 、数学基础 凸优化 【 教程网】 、 基础及其数学库的使用 【 教程网】 、 基础及其机器学习库的使用 【 教程网】 、回归 【 教程网】 、回归实践 【 教程网】 、决策树和随机森林 【 教程网】 、随机森林实践 【 教程网】 、提升 【 教程网】 、 【 教程网】 、 【 教程