机器

Python+Spark 2.0+Hadoop机器学习与大数据实战

资源名称: 机器学习与大数据实战 内容简介: 本书从浅显易懂的 大数据和机器学习 原理说明入手,讲述大数据和机器学习的基本概念,如分类、分析、训练、建模、预测、机器学习(推荐引擎)、机器学习(二元分类)、机器学习(多元分类)、机器学习(回归分析)和数据可视化应用等。书中不仅加入了新近的大数据技术,还丰富了 机器学习 内容。 为降低读者学习大数据技术的门槛,书中提供了丰富的上机实践操作和范例程序详解,展示了如何在单机 系统上通过 虚拟机安装多机 虚拟机,如何建立 集群,再建立 开发环境。书中介绍搭建的上机实

零起点Python机器学习快速入门 完整pdf_Python教程

资源名称:零起点 机器学习快速入门 完整 第 章 从阿尔法狗开始说起 第 章 开发环境第 章 入门案例第 章 基本语法第 章 人工智能入门与实践第 章 机器学习经典算法案例(上)第 章 机器学习经典算法案例(下) 第 章 机器学习组合算法 资源截图:

数字图像处理与机器视觉:Visual C++与Matlab实现_NET教程

资源名称:数字图像处理与机器视觉: 与 实现 《数字图像处理与机器视觉: 与 实现》将理论知识、科学研究和工程实践有机结合起来,介绍了数字图像处理和识别技术的方方面面,内容包括图像的点运算、几何变换、空域和频域滤波、图像复原、形态学处理、图像分割以及图像特征提取。《数字图像处理与机器视觉: 与 实现》还对于机器视觉进行了前导性的探究,重点介绍了两种在工程技术领域非常流行的分类技术 人工神经网络 和支持向量机 ,并在配套给出的识别案例中直击光学字符识别 和人脸识别两大热点问题。 全书结构紧凑,内容深入浅出,

Python机器学习实践指南 附随书代码 中文pdf_Python教程

资源名称: 机器学习实践指南 附随书代码 中文 第 章 机器学习的生态系统 第 章构建应用程序,发现低价的第 章构建应用程序,发现低价的第 章使用逻辑回归预测 市场 第 章创建自定义的新闻源 第 章预测你的内容是否会广为第 章使用机器学习预测股票市场 第 章建立图像相似度的引擎 第 章打造聊天机器人 第 章构建推荐引擎 资源截图:

数据挖掘:实用机器学习工具与技术 原书第3版_数据库教程

资源名称:数据挖掘:实用机器学习工具与技术 原书第 版 内容简介: 大数据时代应用机器学习方法解决数据挖掘问题的实用指南。 洞察隐匿于大数据中的结构模式,有效指导数据挖掘实践和商业应用。 系统的主要开发者将丰富的研发、商业应用和教学实践的经验和技术融会贯通。 广泛覆盖在数据挖掘实践中采用的算法和机器学习技术,着眼于解决实际问题 避免过分要求理论基础和数学知识,重点在于告诉读者 如何去做 ,同时包括许多算法、代码以及具体实例的实现。 将所有的概念都建立在具体实例的基础之上,促使读者首先考虑使用简单的技术。如

Spark MLlib机器学习:算法、源码及实战详解

资源名称: 机器学习 算法、源码及实战详解 内容简介: 《 机器学习:算法、源码及实战详解》以 版本源码为切入点,全面并且深入地解析 模块,着力于探索分布式机器学习的底层实现。 《 机器学习:算法、源码及实战详解》中本着循序渐进的原则,首先解析 的底层实现基础:数据操作及矩阵向量计算操作,该部分是 实现的基础;接着对各个机器学习算法的理论知识进行讲解,并且解析机器学习算法如何在 中实现分布式计算;然后对 源码进行详细的讲解;最后进行 实例的讲解。相信通过《 机器学习:算法、源码及实战详解》的学习,读者可全

零起点PYTHON机器学习快速入门 PDF_Python教程

资源名称:零起点 机器学习快速入门 内容简介: 《零起点 机器学习快速入门》采用独创的黑箱模式, 案例教学机制,结合一线实战案例,介绍 人工智能模块库和常用的机器学习算法。《零起点 机器学习快速入门》中配备大量图表说明,没有枯燥的数学公式,只要懂 、 ,就能够轻松阅读全书,并学习使用书中的知识,分析大数据。 《零起点 机器学习快速入门》具有以下特色: 独创的黑箱教学模式,《零起点 机器学习快速入门》无任何抽象理论和深奥的数学公式。 首次系统化融合 人工智能软件和 数据分析软件,不用再直接使用复杂的 数学矩