机器

大数据与机器学习:实践方法与行业案例

资源名称:大数据与机器学习:实践方法与行业案例 内容简介: 本书从企业实践出发,内容覆盖数据、平台、分析和应用等企业内数据流转的主要环节。布局上,按照数据与平台篇、分析篇和应用篇分别撰写。数据与平台篇(第 章),立足找到数据、整合数据、使用数据三个角度,介绍数据在企业内的分布和处理逻辑,以便快速为分析准备素材。分析篇(第 章),选取企业实际案例,介绍常用的数据挖掘与机器学习算法,以业务场景为导向展示数据分析过程和技巧。应用篇(第 章),选取当前主流的四个应用场景,介绍如何实现数据驱动,让数据 自动 流转于

Python机器学习 预测分析核心算法 中文pdf_Python教程

资源名称: 机器学习 预测分析核心算法 中文 第 章 关于预测的两类核心 第 章 通过理解数据来了解 第 章 预测模型的构建:平衡性 第 章 惩罚线性回归模型第 章 使用惩罚线性方法来 第 章 集成方法第 章 用 构建集成 资源截图:

机器学习与数据挖掘:方法和应用_数据库教程

资源名称:机器学习与数据挖掘:方法和应用 内容简介: 本书分为 个部分,共 章,较为全面地介绍了机器学习的基本概念,并讨论了数据挖掘和知识发现中的有关问题及多策略学习方法,具体地阐述了机器学习与数据挖掘在工程设计,文本、图像和音乐,网页分析、计算机病毒和计算机控制,医疗诊断、生物医疗信号分析和水质分析中的生物信号处理等方面的应用情况。 本书收集众多不同领域中数据挖掘的实际案例,以此来说明数据挖掘的具体解决方法,以期为广大读者提供一个更为广阔的数据挖掘应用视角。 本书的读者,可以是任何对机器学习与数据挖掘感

图解机器学习完整版 ([日]杉山将) 中文

资源名称:图解机器学习完整版 日 杉山将 中文 第 部分绪论 第 章什么是机器学习 第 章学习模型 第 部分有监督回归 第 章最小二乘学习法 第 章带有约束条件的最小二乘法 第 章稀疏学习 第 章鲁棒学习 第 部分有监督分类 第 章基于最小二乘法的分类 第 章支持向量机分类 第 章集成分类 第 章概率分类法 第 章序列数据的分类 第 部分无监督学习 第 章异常检测 第 章无监督降维 第 章聚类 第 部分新兴机器学习算法 第 章在线学习 第 章半监督学习 第 章监督降维 第 章迁移学习 第 章多任务学习 第

Python机器学习实践指南_Python教程

资源名称: 机器学习实践指南 内容简介: 机器学习是近年来渐趋热门的一个领域,同时 语言经过一段时间的发展也已逐渐成为主流的编程语言之一。本书结合了机器学习和 语言两个热门的领域,通过利用两种核心的机器学习算法来将 语言在数据分析方面的优势发挥到极致。 全书共有 章。第 章讲解了 机器学习的生态系统,剩余 章介绍了众多与机器学习相关的算法,包括各类分类算法、数据可视化技术、推荐引擎等,主要包括机器学习在公寓、机票、 市场、新闻源、内容推广、股票市场、图像、聊天机器人和推荐引擎等方面的应用。 本书适合 程序

Java机器学习

资源名称: 机器学习 内容简介: 本书介绍如何使用 创建并实现机器学习算法,既有基础知识,又提供实战案例。主要内容包括:机器学习基本概念、原理, 、 、 等常见机器学习库的用法,各类机器学习常见任务,包括分类、预测预报、物篮分析、检测异常、行为识别、图像识别以及文本分析。 后还提供了相关 资源、各种技术研讨会议以及机器学习挑战赛等阶所需内容。 本书适合机器学习门者,尤其是想使用 机器学习库行数据分析的读者。 资源目录: 第 章 机器学习应用快速入门    机器学习与数据科学    机器学习能够解决的问题 

Python+Spark 2.0+Hadoop机器学习与大数据实战

资源名称: 机器学习与大数据实战 内容简介: 本书从浅显易懂的 大数据和机器学习 原理说明入手,讲述大数据和机器学习的基本概念,如分类、分析、训练、建模、预测、机器学习(推荐引擎)、机器学习(二元分类)、机器学习(多元分类)、机器学习(回归分析)和数据可视化应用等。书中不仅加入了新近的大数据技术,还丰富了 机器学习 内容。 为降低读者学习大数据技术的门槛,书中提供了丰富的上机实践操作和范例程序详解,展示了如何在单机 系统上通过 虚拟机安装多机 虚拟机,如何建立 集群,再建立 开发环境。书中介绍搭建的上机实

Spark MLlib机器学习:算法、源码及实战详解

资源名称: 机器学习 算法、源码及实战详解 内容简介: 《 机器学习:算法、源码及实战详解》以 版本源码为切入点,全面并且深入地解析 模块,着力于探索分布式机器学习的底层实现。 《 机器学习:算法、源码及实战详解》中本着循序渐进的原则,首先解析 的底层实现基础:数据操作及矩阵向量计算操作,该部分是 实现的基础;接着对各个机器学习算法的理论知识进行讲解,并且解析机器学习算法如何在 中实现分布式计算;然后对 源码进行详细的讲解;最后进行 实例的讲解。相信通过《 机器学习:算法、源码及实战详解》的学习,读者可全